并发工具Semaphore CountDownLatch CyclicBarrier



简介

讲解三个JUC的三个工具Semaphore CountDownLatch CyclicBarrier,本质都是基于AbstractQueuedSynchronizer简称AQS AQS的知识可以查看互联网的资料或者我之前分析的JUCL之梳理(一)

Semaphore

Semaphore内部类继承AQS,是最简单的AQS共享锁运用。 初始化N个permit,获取锁-1,释放锁+1,当permit=0则达到非共享状态阻塞。 Semaphore也有公平锁和非公平锁,原理是判断AQS链表的是否有有效数据。 这里只讲解非公平锁相关的代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
public class Semaphore implements java.io.Serializable {
    abstract static class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = 1192457210091910933L;
        // 初始化AQS的state为permit的总数
        Sync(int permits) {
            setState(permits);
        }

        final int getPermits() {
            return getState();
        }

        final int nonfairTryAcquireShared(int acquires) {
            // 自旋+CAS
            for (;;) {
                int available = getState();
                int remaining = available - acquires;
                // remaining < 0 失败 remaining >= 0成功
                if (remaining < 0 ||
                    compareAndSetState(available, remaining))
                    return remaining;
            }
        }
        // 实现AQS的tryReleaseShared
        protected final boolean tryReleaseShared(int releases) {
            // 自旋+CAS
            for (;;) {
                int current = getState();
                int next = current + releases;
                if (next < current) // overflow
                    throw new Error("Maximum permit count exceeded");
                if (compareAndSetState(current, next))
                    return true;
            }
        }
    }

    static final class NonfairSync extends Sync {
        private static final long serialVersionUID = -2694183684443567898L;

        NonfairSync(int permits) {
            super(permits);
        }
        // 实现AQS的tryAcquireShared
        protected int tryAcquireShared(int acquires) {
            return nonfairTryAcquireShared(acquires);
        }
    }
    // 传入permits,默认为非公平锁
    public Semaphore(int permits) {
        sync = new NonfairSync(permits);
    }

    public void acquire(int permits) throws InterruptedException {
        if (permits < 0) throw new IllegalArgumentException();
        // 直接调用AQS的共享锁获取API
        sync.acquireSharedInterruptibly(permits);
    }

    public void release(int permits) {
        if (permits < 0) throw new IllegalArgumentException();
        // 直接调用AQS的共享锁释放API
        sync.releaseShared(permits);
    }
}

CountDownLatch

CountDownLatch内部类继承AQS,是一个计数器,调用AQS共享锁API。 初始化计数为N,调用AQS获取锁则park阻塞,直到调用N次AQS释放锁才unpark阻塞的线程。 源码非常简单,只列出锁相关代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
public class CountDownLatch {
    // 构造函数
    public CountDownLatch(int count) {
        if (count < 0) throw new IllegalArgumentException("count < 0");
        this.sync = new Sync(count);
    }

    private static final class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = 4982264981922014374L;
        // 初始化AQS的state
        Sync(int count) {
            setState(count);
        }

        // state不等于0都获取锁失败,默默阻塞去吧!
        protected int tryAcquireShared(int acquires) {
            return (getState() == 0) ? 1 : -1;
        }

        protected boolean tryReleaseShared(int releases) {
            // Decrement count; signal when transition to zero
            for (;;) {
                int c = getState();
                if (c == 0)
                    return false;
                int nextc = c-1;
                if (compareAndSetState(c, nextc))
                    // 全部锁释放完才return true
                    return nextc == 0;
            }
        }
    }

    private final Sync sync;

    // 封装AQS获取共享锁API
    public void await() throws InterruptedException {
        sync.acquireSharedInterruptibly(1);
    }

    // 封装AQS获取释放锁API
    public void countDown() {
        sync.releaseShared(1);
    }
}

CyclicBarrier

CyclicBarrier依赖的是最常用的锁ReentrantLock,利用condition的await和signal对线程添加和删除线程屏障。 初始化一定的屏障,当最后一个屏障被添加的时候执行指定的任务(若有),并唤醒所有阻塞的线程。

流程相关的代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
public class CyclicBarrier {

    private static class Generation {
        boolean broken = false;
    }

    private Generation generation = new Generation();

    // 还有多少个线程在阻塞等待
    private int count;

    // 唤醒所有阻塞的线程并重置屏障
    private void nextGeneration() {
        // 调用AQS Condition的signalALL把单向链表的节点放入AQS的双向链表中依次唤醒
        trip.signalAll();
        count = parties;
        generation = new Generation();
    }

    // 异常处理
    private void breakBarrier() {
        generation.broken = true;
        count = parties;
        trip.signalAll();
    }


    private int dowait(boolean timed, long nanos)
        throws InterruptedException, BrokenBarrierException, TimeoutException {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            final Generation g = generation;

            if (g.broken)
                throw new BrokenBarrierException();

            if (Thread.interrupted()) {
                breakBarrier();
                throw new InterruptedException();
            }
            // 进入屏障,屏障数量-1
            int index = --count;
            // 最后一个屏障触发传入构造函数的任务
            if (index == 0) {
                boolean ranAction = false;
                try {
                    final Runnable command = barrierCommand;
                    if (command != null)
                        command.run();
                    ranAction = true;
                    // 唤醒其他线程并重置
                    nextGeneration();
                    return 0;
                } finally {
                    if (!ranAction)
                        breakBarrier();
                }
            }

            for (;;) {
                try {
                    // 调用AQS Condition的await放入Conditon的单项链表阻塞等待
                    if (!timed)
                        trip.await();
                    else if (nanos > 0L)
                        nanos = trip.awaitNanos(nanos);
                } catch (InterruptedException ie) {
                    // 触发中断
                    if (g == generation && ! g.broken) {
                        breakBarrier();
                        throw ie;
                    } else {
                        Thread.currentThread().interrupt();
                    }
                }
                // 异常处理
                if (g.broken)
                    throw new BrokenBarrierException();

                if (g != generation)
                    return index;

                if (timed && nanos <= 0L) {
                    breakBarrier();
                    throw new TimeoutException();
                }
            }
        } finally {
            lock.unlock();
        }
    }

    // 有指定任务的构造函数
    public CyclicBarrier(int parties, Runnable barrierAction) {
        if (parties <= 0) throw new IllegalArgumentException();
        this.parties = parties;
        this.count = parties;
        this.barrierCommand = barrierAction;
    }

    // 无指定任务的构造函数
    public CyclicBarrier(int parties) {
        this(parties, null);
    }

    // 添加屏障
    public int await(long timeout, TimeUnit unit)
        throws InterruptedException,
               BrokenBarrierException,
               TimeoutException {
        return dowait(true, unit.toNanos(timeout));
    }
}

CyclicBarrier经常和CountDownLatch做比较,因为他们都可以用在并发测试单元模块…… 其实分析了原理这两个类还是很不一样的

  1. 原理上CyclicBarrier是Conditon的await和signalAll,CountDownLatch是共享锁,都能在达到一定情况唤醒线程并传播;
  2. CyclicBarrier是线程级别的,CountDownLatch是非线程级别,区别就是一个线程只有一个屏障,但可以多次计数;
  3. CyclicBarrier添加完最后屏障可以执行指定任务,且可以重置状态继续利用,而CountDownLatch则不行。

我一般不建议使用CyclicBarrier,因为CountDownLatch从效率和灵活度而言优于CyclicBarrier。 例如有这么一个需求,在单线程等待N个任务完成,CyclicBarrier是无法做到的,而CountDownLatch在等待的线程调用await,处理的线程调用N次countDown就OK。